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Practical Context

1. Autonomous Vehicles - ADAS

3. Satellite Image Understanding

2. Medical Recommendation System 
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Problem Definition

• Input: nighttime cityscapes images

• Output: segmentation maps

Input Output

TreeRoad SidewalkSky Car

Image Segmentation 
Model

Semantic image segmentation on cityscapes imagesnighttime

INTRODUCTION
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Challenges

• Lack of annotated dataset for nighttime cityscapes segmentation

• External conditions: light blur, rainy, etc.

Exemplary nighttime images

Domain Adaptation 
Method

INTRODUCTION

✓
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Objectives

Solve semantic image segmentation in the dark

with GAN-based domain adaptation method

to leverage existing daytime cityscapes dataset 

along with self-training method

Semantic Segmentation 
in the Dark

GAN-based 
Domain Adaptation

Daytime 
Cityscapes 

Dataset

Self-training Method

INTRODUCTION
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Our Contributions

1. Propose a framework for semantic image segmentation in the dark
with domain adaptation method

2. Propose a loss function for semantic image segmentation

3. Build a nighttime cityscapes dataset with GAN

INTRODUCTION
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Related Work

Daytime Twilight Nighttime

1. Dark Model Adaptation. ITSC2018

Daytime

Nighttime

Day-Model Segmentation

Night-Model Segmentation

2. See clearer at night. ISOP2019

3. Self-training. NIPS2020

Unlabeled 
Data

Trained Model

Refine

Night-Model Segmentation

RELATED WORK
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Proposed Framework

Semantic Segmentation 
Model

Day-Night Image 
Translation Model

+

Train

Re-train

Infer
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Nighttime Scenes Daytime Scenes

Train1

Infer

Shared Ground TruthDaytime Data Nighttime Data

Nighttime Unlabeled Data Pseudo Labels

PROPOSED FRAMEWORK
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Dataset

• NEXET Dataset: ~50k day, night, twilight images 

• Histogram-based method to separate images into 2 domains: 
daytime and nighttime (ignore twilight)

PROPOSED FRAMEWORK
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GAN-based Method

Assumption: shared latent space

First Domain Second Domain

PROPOSED FRAMEWORK
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GAN-based Method

1. Variational Autoencoders (VAEs)

2. Weight-sharing

3. GAN

PROPOSED FRAMEWORK
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Day2Night Translation Results

Original Images Initial Results w/ Perceptual Results

• Mismatch vehicle/traffic lights

• Correctly match the lights (w/ Perceptual Loss)

PROPOSED FRAMEWORK
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𝑭𝑰𝑫 = 𝜇1 – 𝜇2
2
+ 𝑇𝑟(𝐶1 + 𝐶2 − 2 𝐶1𝐶2 )

• 𝜇: mean 

• 𝐶: Covariance

ID Method FID_night

1 UNIT w/o Perceptual 98.39

2 UNIT w Perceptual 97.68

Quantitative Results

FID score shows the differences of generated and real images.

PROPOSED FRAMEWORK
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Semantic Segmentation Component

Semantic Segmentation 
Model

Day-Night Image 
Translation Model

+

Train

Re-train

Infer

2

3

4

5

Nighttime Scenes Daytime Scenes

Train1

Infer

Nighttime Unlabeled Data Pseudo Labels

Shared Ground TruthDaytime Data Nighttime Data

PROPOSED FRAMEWORK
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Semantic Segmentation Model

• Panoptic Feature Pyramid Networks – ResNet101

• Specifications:
• Ensemble low and high level features

• Extract multi-scale features

Panoptic Feature Pyramid Networks

PROPOSED FRAMEWORK
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Proposed Combined Loss

𝑳𝒑𝒊𝒙𝒆𝒍(𝑝𝑡) = 𝑪𝒓𝒐𝒔𝒔_𝑬𝒏𝒕𝒓𝒐𝒑𝒚_𝑳𝒐𝒔𝒔 𝑝𝑡 = −log(𝑝𝑡)

𝑳𝒃𝒂𝒍𝒂𝒏𝒄𝒆(𝑝𝑡) = 𝑭𝒐𝒄𝒂𝒍_𝑳𝒐𝒔𝒔(𝑝𝑡) = −𝛼𝑡 1 − 𝑝𝑡
𝛾 ∙ 𝑙𝑜𝑔(𝑝𝑡)

𝑝𝑡 = ቊ
𝑝(𝑥𝑖) 𝑖𝑓 𝑦 = 1
1 − 𝑝(𝑥𝑖) 𝑖𝑓 𝑦 = 0

𝑳𝒄𝒐𝒎𝒃𝒊𝒏𝒆𝒅 𝒑𝒕 = 𝜶 𝑳𝒑𝒊𝒙𝒆𝒍 𝒑𝒕 + 𝟏 − 𝜶 𝑳𝒃𝒂𝒍𝒂𝒏𝒄𝒆(𝒑𝒕)

• Measure differences among couple of pixels

• Solve imbalanced problem of major classes

• We propose:

PROPOSED FRAMEWORK

(𝑾𝒆𝒊𝒈𝒉𝒕 𝜶 = 𝟎. 𝟓)
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Segmentation Dataset

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle
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Cityscapes. M. Cordts et al. CVPR2016
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Nighttime Driving Test. D.Dai and L. Gool. ITSC2018

EXPERIMENTS
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Evaluation Metrics

• Pixel Accuracy (PA)

• Class Accuracy (CA)

• Mean Intersection over Union (mIoU)

• Frequency Weighted Intersection over Union (FWIoU)

𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
=
………………

………………

EXPERIMENTS
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Experiment 1 

ID Configuration mIoU

1.1 FPN-res101-daytime-Cityscapes 27.5

1.2 FPN-res101-self-training-from-scratch 27.1 (-0.4)

1.3 FPN-res101-self-training-from-ckpt 29.0 (+1.5)

• Daytime Cityscapes images

• Self-train with daytime CamVid dataset

➔ Self-training from a checkpoint is 
better than from scratch

Daytime Trainset, 2975

Daytime Valset, 500 Daytime Unlabeled, 701

Data Distribution

EXPERIMENTS
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Experiment 2

ID Testset Configuration mIoU

2.1
Origin

FPN-res101-daynight 31.5 (+2.5)

2.2 FPN-res101-self-training-15k-from-ckpt-2.1 28.8 (-2.7)

2.3
Converted

FPN-res101-daynight 25.2

2.4 FPN-res101-self-training-15k-from-ckpt-2.1 24.7 (-0.5)

• Day-night Cityscapes images

• Self-train with 14.937 nighttime images

➔Minimizing image domain distance 
improves model performance

➔ Self-training is not useful?

EXPERIMENTS

Daynight Trainset, 5950

Daynight Valset, 1000 Nighttime Unlabeled, 14937

Data Distribution
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Experiment 3

• Day-night Cityscapes images

• Self-train with 14.937 nighttime images

• Image Translation with perceptual loss

➔ Perceptual loss maintains semantic 
features when translating images

➔ Self-training is not useful?

ID Testset Configuration mIoU

3.1
Origin

FPN-res101-daynight 33.9 (+2.4)

3.2 FPN-res101-self-training-15k-from-ckpt-3.1 32.1 (-1.8)

3.3
Converted

FPN-res101-daynight 29.3

3.4 FPN-res101-self-training-15k-from-ckpt-3.1 28.4 (-0.9)

EXPERIMENTS

Daynight Trainset, 5950

Daynight Valset, 1000 Nighttime Unlabeled, 14937

Data Distribution
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Experiment 4

• Day-night Cityscapes images

• Self-train with 1.600 nighttime images 
(based on histogram)

• Image Translation with perceptual loss

➔ Self-training is useful with suitable 
amount of unlabeled data

ID Testset Configuration mIoU

3.1
Origin

FPN-res101-daynight 33.9

4.1 FPN-res101-self-training-1k6-HIS-ckpt-3.1 34.2 (+0.3)

3.3
Converted

FPN-res101-daynight 29.3

4.2 FPN-res101-self-training-1k6-HIS-ckpt-3.1 29.8 (+0.5)

EXPERIMENTS

Daynight Trainset, 5950

Daynight Valset, 1000 Nighttime Unlabeled, 1600

Data Distribution
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ID Configuration mIoU

5.1 FPN-res101-onlynight 29.6

5.2 FPN-res101-morenight-from-ckpt-3.1 34.7 (+0.8)

5.3 FPN-res101-self-training-1k6-HIS-from-ckpt-5.1 29.8 (+0.2)

5.4 FPN-res101-self-training-1k6-HIS-from-ckpt-5.2 33.3 (-1.4)

Experiment 5

• Only-night Cityscapes images

• Self-train with 1.600 nighttime images 
(based on histogram)

• Image Translation with perceptual loss

➔ An extra training on the target 
prediction domain improves model 
performance

EXPERIMENTS

Onlynight Trainset, 2975

Onlynight Valset, 500 Nighttime Unlabeled, 1600

Data Distribution
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Experiment 6

• Day-night Cityscapes images

• Self-train with 1.600 nighttime images 
(based on histogram)

• Image Translation with perceptual loss

• Segmentation with Focal Loss

➔ Focal loss result is not higher than cross 
entropy loss

ID Configuration mIoU

3.1 FPN-res101-daynight-CE 33.9

4.1 FPN-res101-self-training-1k6-HIS-from-ckpt-3.1-CE 34.2 (+0.3)

6.1 FPN-res101-daynight-FL 26.9

6.2 FPN-res101-self-training-1k6-HIS-from-ckpt-6.1-FL 28.3 (+1.4)

EXPERIMENTS

Daynight Trainset, 5950

Daynight Valset, 1000 Nighttime Unlabeled, 1600

Data Distribution
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Experiment 7

• Day-night Cityscapes images

• Self-train with 1.600 nighttime images 
(based on FID)

• Image Translation with perceptual loss

• Segmentation with Proposed Combined 
Loss (CL)

➔ FID method helps choose similar 
domain images

ID Configuration mIoU

3.1 FPN-res101-daynight-CE 33.9

7.1 FPN-res101-self-training-1k6-FID-from-ckpt-3.1-CE 38.8 (+4.9)

7.2 FPN-res101-self-training-1k6-FID-from-ckpt-3.1-CL 39.3 (+5.4)

7.3 FPN-res101-self-training-1k6-HIS-from-ckpt-3.1-CL 33.1 (-0.8)

EXPERIMENTS

Daynight Trainset, 5950

Daynight Valset, 1000 Nighttime Unlabeled, 1600

Data Distribution
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Experiment 8

• Day-night Cityscapes images

• Self-train with 1.600 nighttime images 
(based on FID)

• Image Translation with perceptual loss

• Segmentation with Proposed Combined 
Loss (CL)

➔ Our total configuration achieves the 
finest performance

ID Configuration mIoU

3.1 FPN-res101-daynight-CE 33.9

5.2 FPN-res101-morenight-from-ckpt-3.1 34.7 (+0.8)

8.1 FPN-res101-self-training-1k6-HIS-from-ckpt-5.2-CE 37.8 (+3.9)

8.2 FPN-res101-self-training-1k6-FID-from-ckpt-8.1-CE 39.5 (+5.6)

8.3 FPN-res101-self-training-1k6-FID-from-ckpt-8.1-CL 40.7 (+6.8)

EXPERIMENTS

Daynight Trainset, 5950

Daynight Valset, 1000 Nighttime Unlabeled, 1600

Data Distribution
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Improvement Process

ID Configuration mIoU

1 Daytime Cityscapes dataset 27.5

2 Self-train with daytime data 29.0

3 Train and Self-train with day-night data 31.5

4 Add perceptual loss to translate images 33.9

5 Use histogram-based method to choose extra data 34.2

6 Refine day-night model with more nighttime images 34.7

7 Use FID to choose extra data and combined loss 39.3 

8 Total FID, combined loss, self-training from morenight ckpt 40.7

EXPERIMENTS

27.5
29

31.5
33.9 34.2 34.7

39.3 40.7
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30
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Improvement Process
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Experiments Visualization
Image Ground Truth Init Daytime Training Final FID + CL + ST

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

EXPERIMENTS
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Summary – Our Contributions

1. Propose a framework for semantic image segmentation in the dark
with domain adaptation method

2. Propose a loss function for semantic image segmentation

3. Build a nighttime cityscapes dataset with GAN

CONCLUSION
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Publication

PUBLICATION

• Xuan-Duong Nguyen, Anh-Khoa Nguyen Vu, Thanh-Danh Nguyen, Nguyen Phan,

Bao-Duy Duyen Dinh, Nhat-Duy Nguyen, Tam V. Nguyen, Vinh-Tiep Nguyen,

Duy-Dinh Le: Adaptive Detection-Tracking-Counting Framework for Multi-

Vehicle Motion Counting, Image and Vision Computing – IMAVIS (ISI Q1), 2021.

(under review)
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