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Practical Context

1. Autonomous Vehicles - ADAS
2. Medical Recommendation System

3. Satellite Image Understanding
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Problem Definition

Semantic image segmentation on nighttime cityscapes images
* Input: nighttime cityscapes images

* Output: segmentation maps

Image Segmentation
Model

Output
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Challenges

* Lack of annotated dataset for nighttime cityscapes segmentation/

e External conditions: light blur, rainy, etc.

Exemplary nighttime images

Domain Adaptation
Method
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Objectives

Solve semantic image segmentation in the dark
with GAN-based domain adaptation method

to leverage existing daytime cityscapes dataset
along with self-training method

[ Self-training Method J

: !

Daytime GAN-based Semantic Segmentation
Cityscapes Domain Adaptation in the Dark

Dataset -
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Our Contributions

1. Propose a framework for semantic image segmentation in the dark
with domain adaptation method

2. Propose a loss function for semantic image segmentation
3. Build a nighttime cityscapes dataset with GAN
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Related Work

1. Dark Model Adaptation. ITSC2018 —

N
H Daytime ‘ Twilight = & Nighttime

3. Self-training. NIPS2020

Night-Model Segmentation
\_ v,

2. See clearer at night. ISOP2019 —

H Daytime Day-Model Segmentation

Lo

Nighttime Night-Model Segmentation

Unlabeled
Data

Refine

|

Trained Model
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Proposed Framework

\_ Nighttime Scenes Daytime Scenes )

. 1 Train

Day-Night Image
Translation Model

‘ Infer

Semantic Segmentation
Model

Re-train

Train

\_ Daytime Data  Shared Ground Truth  Nighttime Data )
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Dataset

 NEXET Dataset: ~50k day, night, twilight images

* Histogram-based method to separate images into 2 domains:
daytime and nighttime (ignore twilight)

19,858 Daytime Images 19,523 Nighttime Images
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GAN-based Method

Assumption: shared latent space

Z: Shared latent space

> z‘
Pq,‘;%/ E2
Image

Code
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First Domain Second Domain
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GAN-based Method

1. Variational Autoencoders (VAESs)
2. Weight-sharing
3. GAN

» PT/F
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Day2Night Translation Results

* Mismatch vehicle/traffic lights
* Correctly match the lights (w/ Perceptual Loss)

Original Images Initial Results w/ Perceptual Results
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Quantitative Results

FID = ||y, - Hz”z +Tr(C, + G, — 2 C1(3)
* l: mean
* (C: Covariance
FID score shows the differences of generated and real images.

ID Method FID_night
1 UNIT w/o Perceptual 98.39
2 UNIT w Perceptual 97.68
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Semantic Segmentation Component

Nighttime Data )

\Nighttime Unlabeled Data Pseudo Labels )

1 ‘ Infer

Semantic Segmentation
Model

PROPOSED FRAMEWORK
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Semantic Segmentation Model

* Panoptic Feature Pyramid Networks — ResNet101

 Specifications:
* Ensemble low and high level features
e Extract multi-scale features

conv—>2x—>conv—>2x—>conv—>2x

256x1/32

5 Cah 4 conv—2x—>conv—>2x =2 S - l
Té = .',‘..—;“I"—'-'v i 'l'ﬁ" 2

£ 123x 1/4
> L conv—>2x ' :
128 x 1/4
% A\

conv

256 x 1/16

256x1/8 MG

256x1/4

128x1/4

conv—>4x

Panoptic Feature Pyramid Networks
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Proposed Combined Loss

* Measure differences among couple of pixels

Lpixel(pt) = Cross_Entropy_Loss(p;) = —log(p;)

* Solve imbalanced problem of major classes

Lpgiance(p:) = Focal_Loss(p;) = —a; (1 - pt)y - log(pe)

_{P(xi) ify=1
T -p@)  ify=0

* \We propose:

[ Lcombined(pt) = a Lpixel(pt) + (1 - a)Lbalance(pt) ]

(Weight a = 0.5)
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Evaluation Metrics

* Pixel Accuracy (PA)

 Class Accuracy (CA)

* Mean Intersection over Union (mloU)

* Frequency Weighted Intersection over Union (FWIoU)

JoU = —
0 Union

Intersection
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Experiment 1 persosrnen (O

* Daytime Cityscapes images
* Self-train with daytime CamVid dataset

= Daytime Trainset, 2975
=» Self-training from a checkpoint is B Daytime Valset, 500
better than from scratch

B Daytime Unlabeled, 701

ID Configuration mloU

1.1 FPN-res101-daytime-Cityscapes 27.5

1.2 FPN-res101-self-training-from-scratch 27.1(-0.4)
1.3 FPN-res101-self-training-from-ckpt 29.0 (+1.5)
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Experiment 2 pata Distribution

* Day-night Cityscapes images
 Self-train with 14.937 nighttime images

=>» Minimizing image domain distance

. = Daynight Trainset, 5950
improves model performance

B Daynight Valset, 1000 [l Nighttime Unlabeled, 14937
=» Self-training is not useful?

Testset Configuration
2.1 FPN-res101-daynight 31.5(+2.5)
Origin
2.2 FPN-res101-self-training-15k-from-ckpt-2.1 28.8 (-2.7)
2.3 FPN-res101-daynight 25.2
Converted
24 FPN-res101-self-training-15k-from-ckpt-2.1 24.7 (-0.5)
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Experiment 3 pota Distributior

* Day-night Cityscapes images
 Self-train with 14.937 nighttime images
* Image Translation with perceptual loss

=>» Perceptual loss maintains semantic

. . = Daynight Trainset, 5950
features when translating images

B Daynight Valset, 1000 [l Nighttime Unlabeled, 14937

=» Self-training is not useful?

Testset Configuration
3.1 FPN-res101-daynight 33.9(+2.4)
Origin
3.2 FPN-res101-self-training-15k-from-ckpt-3.1 32.1(-1.8)
3.3 FPN-res101-daynight 29.3
Converted
3.4 FPN-res101-self-training-15k-from-ckpt-3.1 28.4 (-0.9)
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Experiment 4 pota Distributior

 Day-night Cityscapes images

 Self-train with 1.600 nighttime images
(based on histogram)

* Image Translation with perceptual loss

.. . . . = Daynight Trainset, 5950
=» Self-training is useful with suitable

B Daynight Valset, 1000 [l Nighttime Unlabeled, 1600
amount of unlabeled data

Testset Configuration
3.1 FPN-res101-daynight 33.9
Origin
4.1 FPN-res101-self-training-1k6-HIS-ckpt-3.1 34.2 (+0.3)
3.3 FPN-res101-daynight 29.3
Converted
4.2 FPN-res101-self-training-1k6-HIS-ckpt-3.1 29.8 (+0.5)
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Experiment 5 pota Distributior

* Only-night Cityscapes images

 Self-train with 1.600 nighttime images
(based on histogram)

* Image Translation with perceptual loss

= Onlynight Trainset, 2975

=>» An extra training on the target

T € B Onlynight Valset, 500 [l Nighttime Unlabeled, 1600
prediction domain improves model

performance
ID Configuration mioU
5.1 FPN-res101-onlynight 29.6
5.2 FPN-res101-morenight-from-ckpt-3.1 34.7 (+0.8)
5.3 FPN-res101-self-training-1k6-HIS-from-ckpt-5.1 29.8 (+0.2)
5.4 FPN-res101-self-training-1k6-HIS-from-ckpt-5.2 33.3(-1.4)
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Experiment 6 pota Distrbution

 Day-night Cityscapes images

 Self-train with 1.600 nighttime images
(based on histogram)

* Image Translation with perceptual loss

e Segmentation with Focal Loss

) . = Daynight Trainset, 5950
=>» Focal loss result is not higher than cross

B Daynight Valset, 1000 [l Nighttime Unlabeled, 1600
entropy loss

ID Configuration mioU

3.1 FPN-res101-daynight-CE 33.9

4.1 FPN-res101-self-training-1k6-HIS-from-ckpt-3.1-CE 34.2 (+0.3)
6.1 FPN-res101-daynight-FL 26.9

6.2 FPN-res101-self-training-1k6-HIS-from-ckpt-6.1-FL 28.3 (+1.4)
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Experiment 7 persosrnen (O

Day-night Cityscapes images

Self-train with 1.600 nighttime images
(based on FID)

Image Translation with perceptual loss

Segmentation with Proposed Combined

Loss (CL) B Dpaynight Trainset, 5950
o B Daynight Valset, 1000 [l Nighttime Unlabeled, 1600
=>» FID method helps choose similar

domain images

ID Configuration mioU

3.1 FPN-res101-daynight-CE 33.9

7.1 FPN-res101-self-training-1k6-FID-from-ckpt-3.1-CE 38.8 (+4.9)
7.2 FPN-res101-self-training-1k6-FID-from-ckpt-3.1-CL 39.3 (+5.4)
7.3 FPN-res101-self-training-1k6-HIS-from-ckpt-3.1-CL 33.1 (-0.8)
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Experiment 3 persosrnen (O

Day-night Cityscapes images

Self-train with 1.600 nighttime images
(based on FID)

Image Translation with perceptual loss

Segmentation with Proposed Combined

LOSS (CL) B Dpaynight Trainset, 5950

_ . . B Daynight Valset, 1000 [l Nighttime Unlabeled, 1600
=>» Our total configuration achieves the

finest performance

ID Configuration mloU

3.1 FPN-res101-daynight-CE 339

5.2 FPN-res101-morenight-from-ckpt-3.1 34.7 (+0.8)
8.1 FPN-res101-self-training-1k6-HIS-from-ckpt-5.2-CE 37.8 (+3.9)
8.2 FPN-res101-self-training-1k6-FID-from-ckpt-8.1-CE 39.5 (+5.6)
8.3 FPN-res101-self-training-1k6-FID-from-ckpt-8.1-CL 40.7 (+6.8)
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Improvement Process

@

50

Improvement Process

Experiment ID

45 39.3 40.7
340 315 339 34.2 34.7 G =
25
1 2 3 4 5 6 7 8

0O N oo O b W N B

Configuration

Daytime Cityscapes dataset

Self-train with daytime data

Train and Self-train with day-night data

Add perceptual loss to translate images

Use histogram-based method to choose extra data
Refine day-night model with more nighttime images
Use FID to choose extra data and combined loss

Total FID, combined loss, self-training from morenight ckpt
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Experiments Visualization

Ground Truth Init Daytime Training

R
Road Building Fence _ Traffic Light Traffic Sign Vegetation

Semantic Image Segmentation in the Dark with Domain Adaptation Method EXPERIMENTS 29/31




V7
Summary — Our Contributions

1. Propose a framework for semantic image segmentation in the dark
with domain adaptation method

2. Propose a loss function for semantic image segmentation

3. Build a nighttime cityscapes dataset with GAN

e s =) "r, . _.-' ..:L Gt
[ Nighttime Scenes Daytime Scenes } tlghttlme Unlabeled Data  Pseudo Labels }

@ | ran | @fw

Day-Night Image

-Ni @ Semantic Segmentation
Translation Model Model
@ |
Train e

Re-train

Daytime Data  Shared Ground Truth  Nighttime Data

' > (D
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Thanks for your attention!
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