

University of Information Technology, VNU-HCM Faculty of Computer Science

SEMANTIC IMAGE SEGMENTATION IN THE DARK WITH DOMAIN ADAPTATION METHOD

THESIS PRESENTATION

Nguyen Thanh Danh – 17520324 Phan Nguyen – 17520828 Advisor: Dr. Nguyen Vinh Tiep

Ho Chi Minh City, 2021

1. Introduction

Contents

- 3. Proposed Framework
 - a. Image Translation Component
 - b. Semantic Segmentation Component
- 4. Experimental Results
- 5. Conclusion

Practical Context

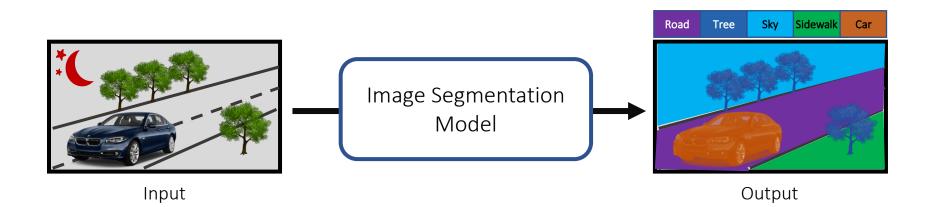
- 1. Autonomous Vehicles ADAS
- 2. Medical Recommendation System
- 3. Satellite Image Understanding

1

Problem Definition

Semantic image segmentation on *nighttime* cityscapes images

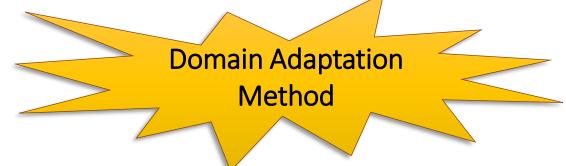
- Input: nighttime cityscapes images
- **Output**: segmentation maps



Challenges

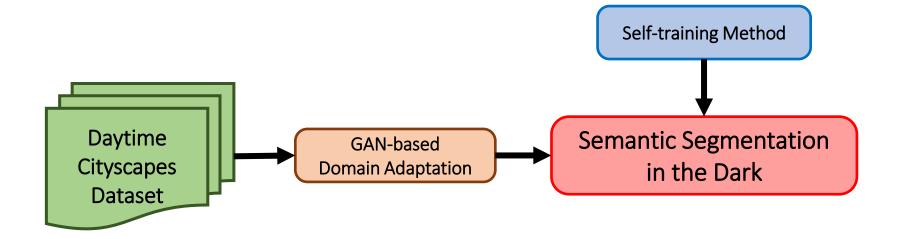
- Lack of annotated dataset for nighttime cityscapes segmentation
- External conditions: light blur, rainy, etc.

Exemplary nighttime images



Objectives

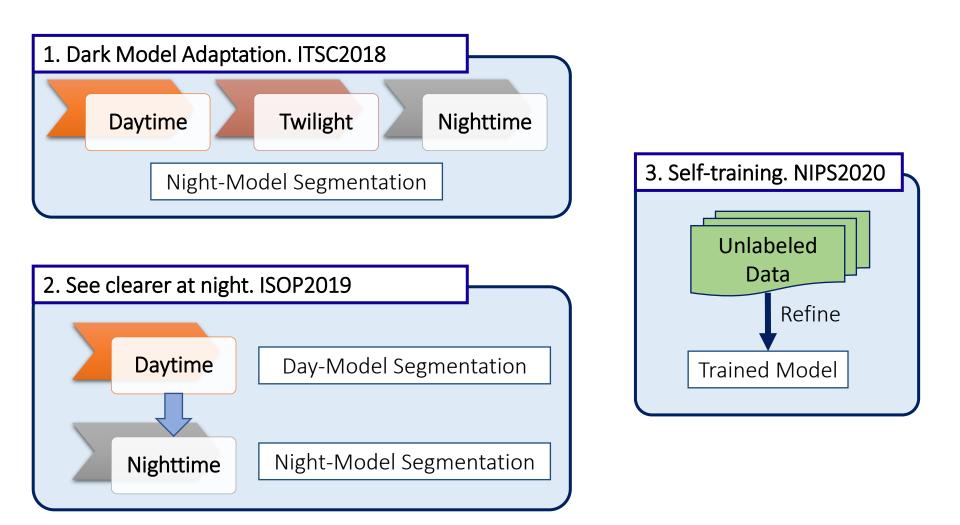
Solve semantic image segmentation in the dark with GAN-based domain adaptation method to leverage existing daytime cityscapes dataset along with self-training method



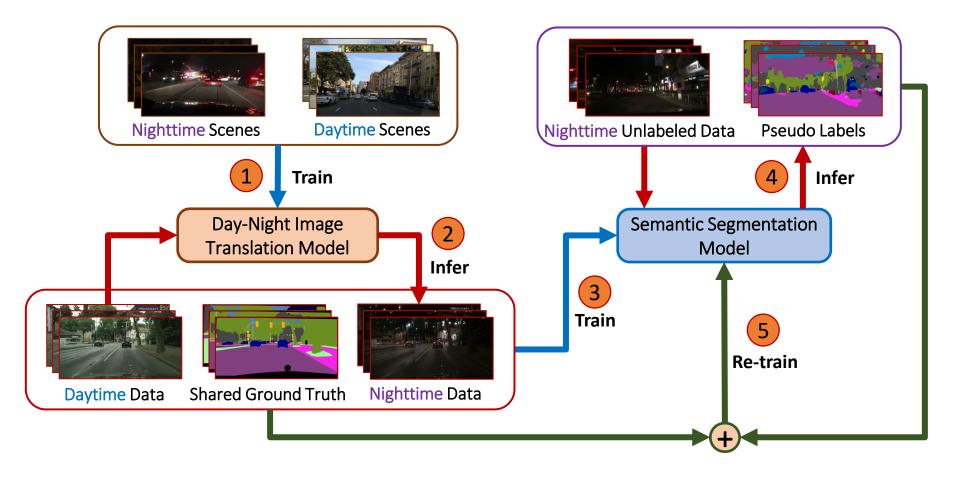
Our Contributions

- 1. Propose a framework for semantic image segmentation in the dark with domain adaptation method
- 2. Propose **a loss function** for semantic image segmentation
- 3. Build a **nighttime cityscapes dataset** with GAN

Related Work

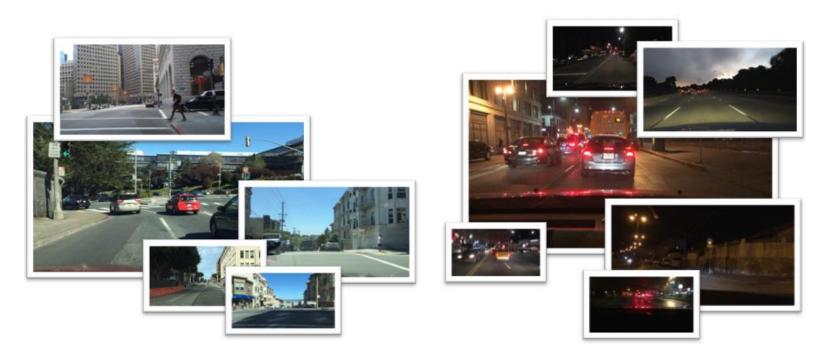


Proposed Framework



Dataset

- NEXET Dataset: ~50k day, night, twilight images
- Histogram-based method to separate images into 2 domains: daytime and nighttime (ignore twilight)

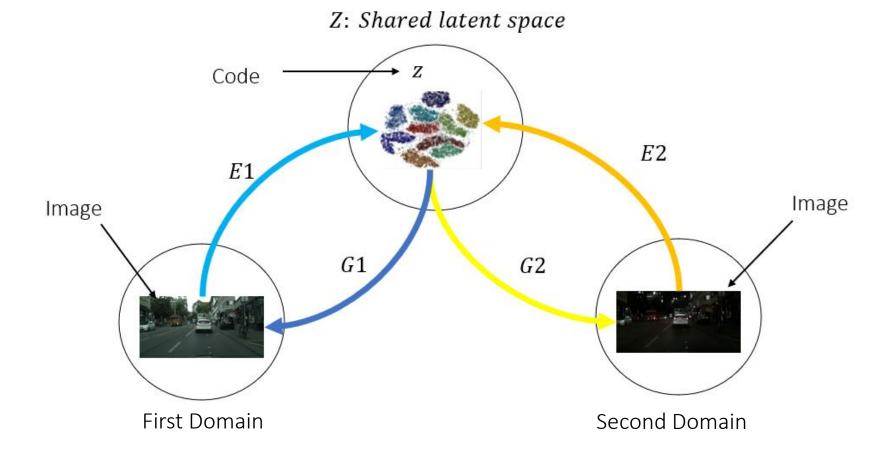


19,858 Daytime Images

19,523 Nighttime Images

GAN-based Method

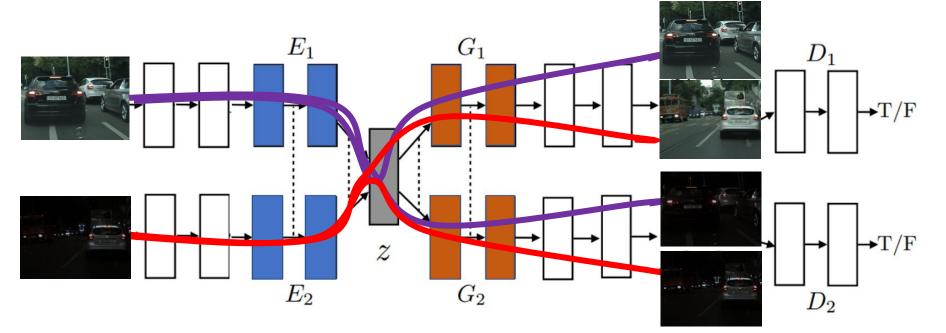
Assumption: shared latent space



Semantic Image Segmentation in the Dark with Domain Adaptation Method

GAN-based Method

- Variational Autoencoders (VAEs) 1.
- Weight-sharing 2.
- 3. GAN



Day2Night Translation Results

- Mismatch vehicle/traffic lights
- Correctly match the lights (w/ Perceptual Loss)

Original Images

Initial Results

w/ Perceptual Results

Semantic Image Segmentation in the Dark with Domain Adaptation Method

PROPOSED FRAMEWORK

13/31

Quantitative Results

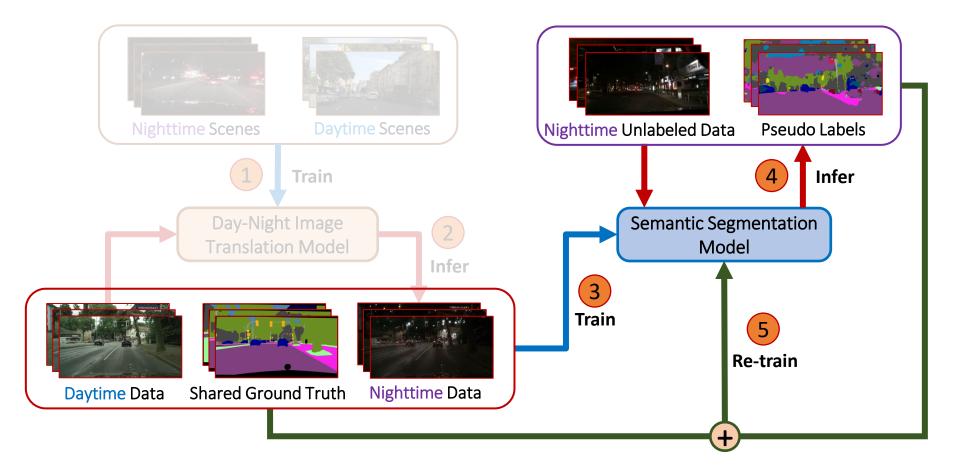
FID =
$$||\mu_1 - \mu_2||^2 + Tr(C_1 + C_2 - 2\sqrt{C_1C_2})$$

- *µ*: mean
- C: Covariance

FID score shows the differences of **generated** and **real** images.

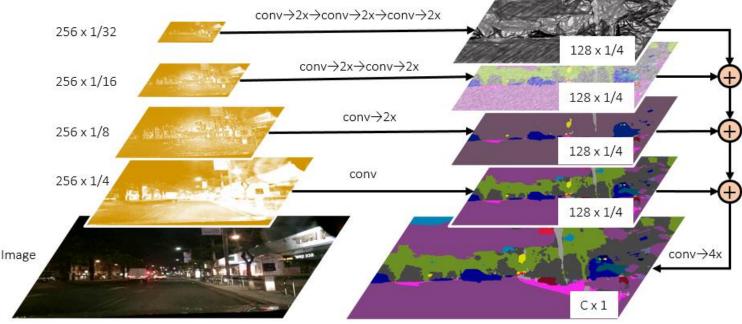
ID	Method	FID_night
1	UNIT w/o Perceptual	98.39
2	UNIT w Perceptual	97.68

Semantic Segmentation Component



Semantic Segmentation Model

- Panoptic Feature Pyramid Networks ResNet101
- Specifications:
 - Ensemble low and high level features
 - Extract multi-scale features



Panoptic Feature Pyramid Networks

Proposed Combined Loss

• Measure differences among couple of pixels

 $L_{pixel}(p_t) = Cross_Entropy_Loss(p_t) = -\log(p_t)$

• Solve **imbalanced problem** of major classes

 $\boldsymbol{L_{balance}}(p_t) = \boldsymbol{Focal_Loss}(p_t) = -\alpha_t \, (1 - p_t)^{\gamma} \cdot \log(p_t)$

$$p_t = \begin{cases} p(x_i) & \text{if } y = 1\\ 1 - p(x_i) & \text{if } y = 0 \end{cases}$$

• We propose:

$$L_{combined}(p_t) = \alpha L_{pixel}(p_t) + (1 - \alpha) L_{balance}(p_t)$$

(Weight $\alpha = 0.5$)

Segmentation Dataset

Cityscapes. M. Cordts et al. CVPR2016

Nighttime Driving Test. D.Dai and L. Gool. ITSC2018

Void	Road	Sidewalk	Building	Wall	Fence	Pole	Traffic Light	Traffic Sign	Vegetation
Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	Motorcycle	Bicycle

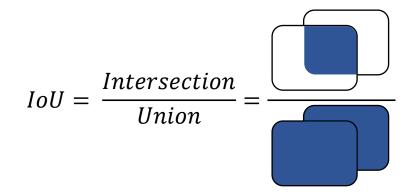
Semantic Image Segmentation in the Dark with Domain Adaptation Method

EXPERIMENTS

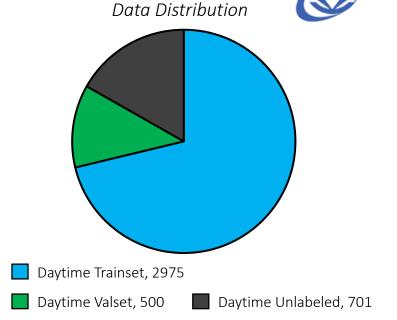
18/31

Evaluation Metrics

- Pixel Accuracy (PA)
- Class Accuracy (CA)
- Mean Intersection over Union (mIoU)
- Frequency Weighted Intersection over Union (FWIoU)



- Daytime Cityscapes images
- Self-train with **daytime CamVid** dataset

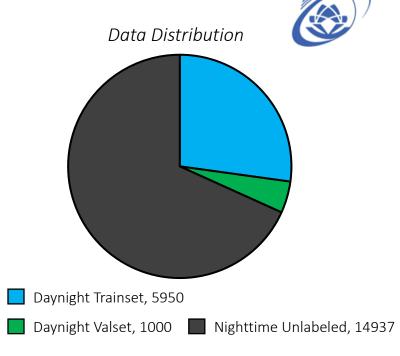


➔ Self-training from a checkpoint is better than from scratch

ID	Configuration	mloU			
1.1	FPN-res101-daytime-Cityscapes	27.5			
1.2	FPN-res101-self-training-from-scratch	27.1 (-0.4)			
1.3	FPN-res101-self-training-from-ckpt	<mark>29.0 (+1.5)</mark>			
Semantic Ima	mantic Image Segmentation in the Dark with Domain Adaptation Method EXPERIMENTS				

- Day-night Cityscapes images
- Self-train with **14.937 nighttime images**

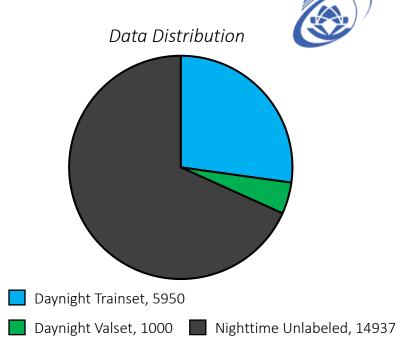
- ➔ Minimizing image domain distance improves model performance
- ➔ Self-training is not useful?



ID	Testset	Configuration	mloU
2.1	Origin	FPN-res101-daynight	31.5 (+2.5)
2.2	Origin	FPN-res101-self-training-15k-from-ckpt-2.1	28.8 (-2.7)
2.3	Converted	FPN-res101-daynight	25.2
2.4	Converted	FPN-res101-self-training-15k-from-ckpt-2.1	24.7 (-0.5)

Semantic Image Segmentation in the Dark with Domain Adaptation Method

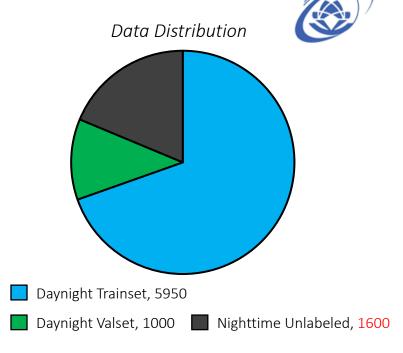
- Day-night Cityscapes images
- Self-train with **14.937 nighttime images**
- Image Translation with perceptual loss
- Perceptual loss maintains semantic features when translating images
- ➔ Self-training is not useful?



ID	Testset	Configuration	mloU
3.1	Origin	FPN-res101-daynight	33.9 (+2.4)
3.2	Origin	FPN-res101-self-training-15k-from-ckpt-3.1	32.1 (-1.8)
3.3	Converted	FPN-res101-daynight	29.3
3.4	Converted	FPN-res101-self-training-15k-from-ckpt-3.1	28.4 (-0.9)

Semantic Image Segmentation in the Dark with Domain Adaptation Method

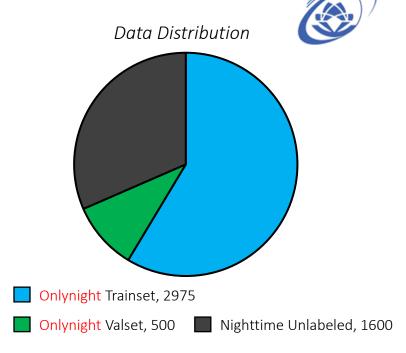
- Day-night Cityscapes images
- Self-train with 1.600 nighttime images (based on histogram)
- Image Translation with **perceptual loss**
- ➔ Self-training is useful with suitable amount of unlabeled data



ID	Testset	Configuration	mloU
3.1	Origin	FPN-res101-daynight	33.9
4.1	Origin	FPN-res101-self-training-1k6-HIS-ckpt-3.1	34.2 (+0.3)
3.3	Converted	FPN-res101-daynight	29.3
4.2	Converted	FPN-res101-self-training-1k6-HIS-ckpt-3.1	29.8 (+0.5)

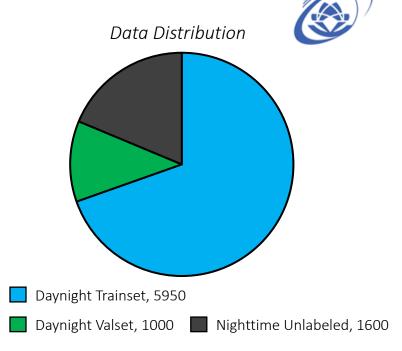
Semantic Image Segmentation in the Dark with Domain Adaptation Method

- Only-night Cityscapes images
- Self-train with 1.600 nighttime images (based on histogram)
- Image Translation with **perceptual loss**
- ➔ An extra training on the target prediction domain improves model performance



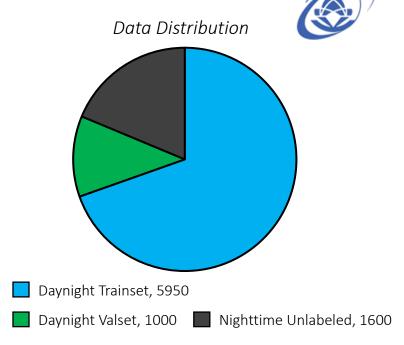
ID	Configuration	mloU	
5.1	FPN-res101-onlynight	29.6	
5.2	FPN-res101-morenight-from-ckpt-3.1	34.7 (+0.8)	
5.3	FPN-res101-self-training-1k6-HIS-from-ckpt-5.1	29.8 (+0.2)	
5.4	FPN-res101-self-training-1k6-HIS-from-ckpt-5.2	33.3 (-1.4)	
emantic Ima	age Segmentation in the Dark with Domain Adaptation Method	EXPERIMENTS	24/31

- Day-night Cityscapes images
- Self-train with **1.600 nighttime images** (based on **histogram**)
- Image Translation with **perceptual loss**
- Segmentation with Focal Loss
- ➔ Focal loss result is not higher than cross entropy loss



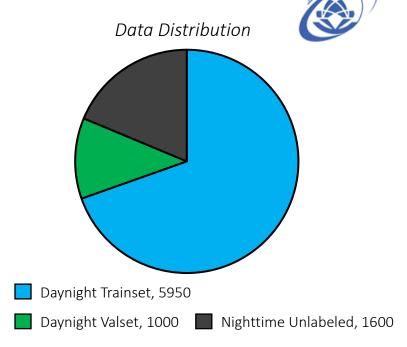
ID	Configuration	mloU	
3.1	FPN-res101-daynight- <mark>CE</mark>	33.9	
4.1	FPN-res101-self-training-1k6-HIS-from-ckpt-3.1-CE	34.2 (+0.3)	
6.1	FPN-res101-daynight- <mark>FL</mark>	26.9	
6.2	FPN-res101-self-training-1k6-HIS-from-ckpt-6.1-FL	28.3 (+1.4)	
Semantic Ima	EXPERIMENTS	25/31	

- Day-night Cityscapes images
- Self-train with 1.600 nighttime images (based on FID)
- Image Translation with **perceptual loss**
- Segmentation with Proposed Combined Loss (CL)
- ➔ FID method helps choose similar domain images



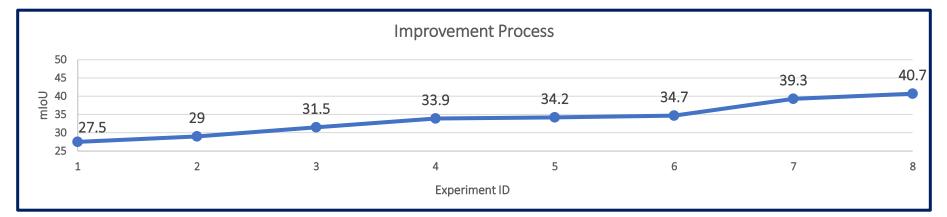
ID	Configuration	mloU	
3.1	FPN-res101-daynight-CE	33.9	
7.1	FPN-res101-self-training-1k6- FID -from-ckpt-3.1-CE	38.8 (+4.9)	
7.2	FPN-res101-self-training-1k6- FID -from-ckpt-3.1-CL	39.3 (+5.4)	
7.3	FPN-res101-self-training-1k6- HIS -from-ckpt-3.1-CL	33.1 (-0.8)	
emantic Ima	ge Segmentation in the Dark with Domain Adaptation Method	EXPERIMENTS 26/	/31

- Day-night Cityscapes images
- Self-train with 1.600 nighttime images (based on FID)
- Image Translation with **perceptual loss**
- Segmentation with Proposed Combined Loss (CL)
- ➔ Our total configuration achieves the finest performance



ID	Configuration	mloU				
3.1	FPN-res101-daynight-CE	33.9				
5.2	FPN-res101-morenight-from-ckpt-3.1	34.7 (+0.8)				
8.1	FPN-res101-self-training-1k6-HIS-from-ckpt-5.2-CE	37.8 (+3.9)				
8.2	FPN-res101-self-training-1k6- FID -from-ckpt-8.1-CE	39.5 (+5.6)				
8.3	FPN-res101-self-training-1k6- FID -from-ckpt-8.1-CL	<mark>40.7 (+6.8)</mark>				
emantic Ima	nantic Image Segmentation in the Dark with Domain Adaptation Method EXPERIMENTS					

Improvement Process



ID	Configuration	mloU				
1	Daytime Cityscapes dataset	27.5				
2	Self-train with daytime data	29.0				
3	Train and Self-train with day-night data	31.5				
4	Add perceptual loss to translate images	33.9				
5	Use histogram-based method to choose extra data	34.2				
6	Refine day-night model with more nighttime images	34.7				
7	7 Use FID to choose extra data and combined loss					
8	Total FID, combined loss, self-training from morenight ckpt	40.7				
Semantic Ima	ge Segmentation in the Dark with Domain Adaptation Method	EXPERIMENTS	28/31			

Experiments Visualization

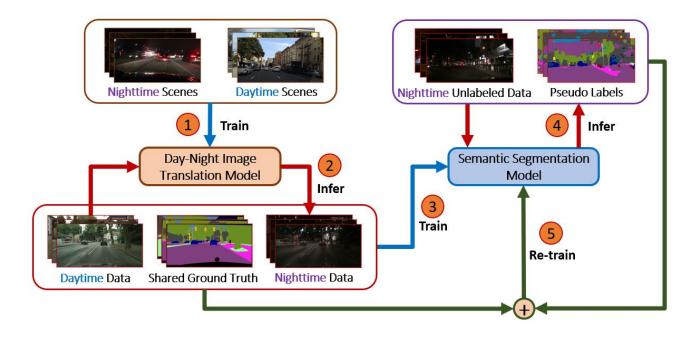
Void	Road	Sidewalk	Building	Wall	Fence	Pole	Traffic Light	Traffic Sign	Vegetation
Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	Motorcycle	Bicycle

Semantic Image Segmentation in the Dark with Domain Adaptation Method

EXPERIMENTS

Summary – Our Contributions

- 1. Propose a framework for semantic image segmentation in the dark with domain adaptation method
- 2. Propose a loss function for semantic image segmentation
- 3. Build a **nighttime cityscapes dataset** with GAN



Publication

 Xuan-Duong Nguyen, Anh-Khoa Nguyen Vu, Thanh-Danh Nguyen, Nguyen Phan, Bao-Duy Duyen Dinh, Nhat-Duy Nguyen, Tam V. Nguyen, Vinh-Tiep Nguyen, Duy-Dinh Le: Adaptive Detection-Tracking-Counting Framework for Multi-Vehicle Motion Counting, Image and Vision Computing – IMAVIS (ISI Q1), 2021. (under review)

Thanks for your attention!

